Electrogenic Na-Ca exchange clears Ca2+ loads from retinal amacrine cells in culture.
نویسندگان
چکیده
Calcium influx into cultured retinal amacrine cells is followed by a small, slow, inward current that we show here results from the operation of electrogenic Na-Ca exchange. The activity of the exchanger is shown to correlate with the magnitude of the Ca2+ load and to depend on both the Ca2+ and Na+ gradients. Li+ is unable to substitute for Na+ and in the absence of Na+, slow tail currents are almost entirely suppressed. A rapid change in [K+]o does not affect the activity of the exchanger, suggesting that only Na+ and Ca2+ are transported. The ratio of charge entering as Ca2+ current to the charge entering as exchange current is highly variable between cells. We suggest that variability results from a variable fraction of Ca2+ load, we estimate typically 40%, being removed by a process other than Na-Ca exchange. This process is likely to involve internal buffering or sequestration since inhibition of the plasmalemmal Ca(2+)-ATPase does not increase the fraction of Ca2+ expelled by the exchanger. Ca2+ loading performed in the absence of Na+o generates smaller exchange charge the longer the delay in returning Na+o to the neuron. About 30% of exchange charge is lost for a delay of 1 sec.
منابع مشابه
Optical measurements of Na-Ca-K exchange currents in intact outer segments isolated from bovine retinal rods
The properties of Na-Ca-K exchange current through the plasma membrane of intact rod outer segments (ROS) isolated from bovine retinas were studied with the optical probe neutral red. Small cellular organelles such as bovine ROS do not offer an adequate collecting area to measure Na-Ca-K exchange currents with electrophysiological techniques. This study demonstrates that Na-Ca-K exchange curren...
متن کاملPersistent Na+ current and Ca2+ current boost graded depolarization of rat retinal amacrine cells in culture.
Retinal amacrine cells are depolarized by the excitatory synaptic input from bipolar cells. When a graded depolarization exceeds the threshold level, trains of action potentials are generated. There have been several reports that both spikes and graded depolarization are sensitive to tetrodotoxin (TTX). In the present study, we investigated the contribution of voltage-gated currents to membrane...
متن کاملCa2+ clearance at growth cones produced by crayfish motor axons in an explant culture.
Intracellular free Ca2+ concentration ([Ca2+]i) plays an important role in the regulation of growth cone (GC) motility; however, the mechanisms responsible for clearing Ca2+ from GCs have not been examined. We studied the Ca2+-clearance mechanisms in GCs produced by crayfish tonic and phasic motor axons by measuring the decay of [Ca2+]i after a high [K+] depolarizing pulse using fura-2AM. Tonic...
متن کاملPersistent Na Current and Ca Current Boost Graded Depolarization of Rat Retinal Amacrine Cells in Culture
Koizumi, Amane, Shu-Ichi Watanabe, and Akimichi Kaneko. Persistent Na current and Ca current boost graded depolarization of rat retinal amacrine cells in culture. J Neurophysiol 86: 1006–1016, 2001. Retinal amacrine cells are depolarized by the excitatory synaptic input from bipolar cells. When a graded depolarization exceeds the threshold level, trains of action potentials are generated. There...
متن کاملElectrogenic Na+/Ca2+ Exchange
Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca(2+) concentrations ([Ca(2+)](i)). To directly asses the effects of increasing [Ca(2+)](i) in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca(2+) from internal stores. We observed an inward current response to caffeine. Monovalen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 5 Pt 1 شماره
صفحات -
تاریخ انتشار 1995